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Abstract
Given a unicursal quartic in a plane and four bi-tangential straight lines, there
exist a pair of conics four times tangential to it. Choosing an arbitrary point
K0 outside the plane, the lines and either one of the conics determine four
planes and a cone, and a quartic surface can be found that stays tangential to
them and presents 15 conic point singularities, including K0. We introduce a
one-parameter family of symmetric tensors which are polynomial functions of
degree 7 of the Cartesian coordinates. Each of them determines two families
of curves on the surface, which are the null curves of the associated metric and
are the integral curves of a differential system which turns out to possess the
Painlevé property and to be integrable by quadratures. Differential systems
of that form have been found (Gaffet 2006 J. Phys. A: Math. Gen. 39 99) to
represent the rotating motion with precession of gas clouds expanding into a
vacuum.

PACS numbers: 02.30.Ik, 45.20.Jj

1. Introduction

It has recently been shown (Gaffet 2001) that the adiabatic expansion into a vacuum of a
rotating mass of gas, governed by the well-known Euler equations of gasdynamics, gives rise
under certain conditions—such as the monatomicity of the gas—to a Hamiltonian system of
the Liouville type (Whittaker 1959), and must accordingly be integrable by quadratures. This
system has also been shown to have the Painlevé property in various sub-cases.

Gaffet (2003), under the restricting assumption of the vanishing of one of the constants
of the motion, has shown that the Liouville tori corresponding to a given set of integrals of
the motion can be changed through an appropriate transformation of variables into a quartic
surface (�) presenting a number of conic point singularities. In those cases, the system
possesses the Painlevé property, and a solution by separation of variables was also found.
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More recently, forsaking the above-mentioned constraint on the constants of motion, the
system has been found (Gaffet 2006) to involve a new essential geometrical ingredient: a
quartic curve, denoted as (A4), traced on (�). It is one of the purposes of the present work
to clarify the geometrical relation between that curve and the surface (�); they are in fact
intimately related: knowledge of one determines the other, as it will turn out.

Given these two key geometrical elements, several polynomial functions can be defined
on the surface, which constitute the coefficients of a differential system, which is integrable
by quadratures. The system is shown here to have the Painlevé property when the independent
variable is chosen to coincide with the thermasy of the cloud, i.e. the time integral of its
absolute temperature: u = ∫

T dt . The Painlevé property (Painlevé 1902, Ince 1956) has
long been known to be associated with complete integrability, after the works of Kowalevski
(1889a, 1889b), and Ablowitz and Segur (1977, 1980).

2. Quartic surfaces with 15 conic singular points

2.1. General properties

The quartic surfaces considered in the present work present 15 conic singularities and, after a
linear coordinate transformation that sends one of the conic points to infinity, their equation
assumes the form

A2ρ
2 + B3ρ + C4 = 0 (2.1)

where A2, B3, C4 are polynomials in the coordinates (ξ, η), ρ is the third coordinate and the
lower index is a reminder of the polynomial’s degree. The second-degree curve A2(ξ, η) = 0,
denoted as (A2), is the trace on horizontal sections (ρ = constant) of the vertical cylinder
tangential to (�) at the conic point at infinity. We further require that the discriminant

�(ξ, η) = B2
3 − 4A2C4 (2.2)

be decomposable into a product of four linear factors and one quadratic factor

� ≡ �1�2�3�4E (2.3)

which represent respectively vertical planes denoted as (�a) (a = 1, . . . , 4) and a vertical
cylinder (E), tangential to the surface all along their intersection with it.

The linear factors determine a quadrangle in the (ξ, η) plane, with three diagonals; there is
no loss of generality in choosing the coordinate system in such a way that one of the diagonals
is removed to infinity, and then, e.g., (�1) and (�2) are parallel, and (�3) and (�4) are
parallel too; the intersections K12 of (�1) and (�2), and K34 of (�3) and (�4), are conic
singular points at infinity. Finally, we also require that two horizontal plane sections (i.e.
sections by planes passing through K12 and K34) share with (�1 · · ·�4) the property of being
tangential to the surface all along their intersection with it, e.g., and without loss of generality,
the sections ρ = 0 and ρ = 1. As a result, the following must be perfect squares:

C4 ≡ γ 2
0 A2 + B3 + C4 ≡ γ 2

5 (2.4)

where γ0 and γ5 are second-degree polynomials; and the equation of the surface then reads

A2ρ
2 + ρ

(
γ 2

5 − γ 2
0 − A2

)
+ γ 2

0 = 0. (2.5)

It follows that, whenever � = 0, A2 = (γ0 ± γ5)
2. Letting

γA = γ0 + γ5 γB = γ0 − γ5 (2.6)

we have

� ≡ (
γ 2

A − A2
)(

γ 2
B − A2

)
(2.7)
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and, in fact, we shall assume that the following identifications hold:

A2 ≡ γ 2
A − �1 · · ·�4 (2.8a)

≡ γ 2
B − E (2.8b)

γB must then be a linear factor. The above identities mean that (A2) is tangential to
(�1), . . . , (�4) and bi-tangential to (E)—in agreement with the fact that any curve traced on
(�) should be tangential to the locus � = 0, which is the ‘boundary’ of (�) in projection on
the (ξ, η) plane.

Let us finally remark that the conic points lie at the 14 intersections of (�1), . . . , (�4) and
(E); and the 15th is the projection point, at infinity along the vertical (ρ) axis. One may verify
that the decomposability of the discriminant in the form (2.3) is preserved, independently of
the choice of conic point as the projection point.

2.2. Reduced form of the surface

Through a linear transformation of the coordinates (ξ, η), it is possible to change a given
quadrangle into any other quadrangle. It will be convenient to consider the new coordinate
system (u, v) in which the linear factors �i have the following reduced form:

�1 ≡ u − 1 − v

�2 ≡ u + 1 − v

�3 ≡ u − 1 + v

�4 ≡ u + 1 + v

(2.9)

so the three diagonals of the quadrangle are the coordinate axes and the line at infinity.
There exists a one-parameter family of conics (A2) tangential to that quadrangle, and they

are given by equation (2.8a), in which

γA ≡ u2 − v2 − λ (2.10)

and λ is the free parameter. Similarly, the conic (E) is given by (2.8b), where γB involves
three a priori arbitrary parameters b1, b2, b3:

γB ≡ su + dv + b3 (2.11)

with

s ≡ b1 + b2 d ≡ b1 − b2. (2.12)

Thus, the reduced form of the surface involves four parameters in all: b1,2,3 and λ.

2.3. The unicursal quartics (A4) associated with (�)

When the four parameters satisfy a certain constraint

F (λ, b1, b2, b3) = 0 (2.13)

there exists a second-degree surface (�2)—a quadric—whose intersection with (�)

decomposes into a pair of quartic curves, (A4) and (A′
4) say. As it turns out, they are unicursal,

and their horizontal projections consequently present three double points. Being curves traced
on the surface (�), the projections are, in addition, bi-tangential to (�1), . . . , (�4) and four
times tangential to (E) (see section 2.1)

Conversely, let (A4) be a plane unicursal quartic, bi-tangential to each side of the
quadrangle: these curves constitute a family depending on three angular parameters α1, α2, α3.
This shows that the relation F(λ, b1, b2, b3) = 0 can be parametrized by the three α.
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We first give the parametric representation of the family of bi-tangential quartics in
terms of α1,2,3 and then the expressions of λ, b1, b2, b3 in terms of the α, i.e., the parametric
representation of (A4) and (E).

To start with, A4 must have the form, analogous to (2.8a),

A4 ≡ Q2
2 − 4�1�2�3�4 (2.14)

where Q2 is of second degree:

Q2 ≡ (q11u
2 + q22v

2 + q33) + 2(q12uv + q13u + q23v). (2.15)

Writing for short chi, shi for cosh αi, sinh αi (i = 1, 2, 3), we introduce new hyperbolic angles
βi as

cosh βi = (1 + chj chk)/(chj + chk)

sinh βi = −shj shk/(chj + chk)
(i, j, k = Permutation of 1, 2, 3) (2.16)

together with the sums of angles

ϕi = αi + βi. (2.17)

Then, the coefficients of Q2 are the following:

qii = 2chi − �

qij = (chi + chj ) sinh ϕk

(i, j, k = Permutation of 1, 2, 3) (2.18)

where � is the symmetrical function:

� = (ch1 + ch2 + ch3) + ch1ch2ch3 − sh1sh2sh3. (2.19)

To find the coefficients λ, b1, b2, b3 of the corresponding surface (�), it turns out to be
convenient to introduce a fourth angular variable α0, defined by

cosh2 α0 ≡ − (ch1ch2 + ch2ch3 + ch3ch1) (2.20)

and, writing from now on ch0, sh0 for cosh α0, sinh α0, we find

λ = (R + 1)/(R − 1)

R = (ch0 − ch2)/(ch0 + ch1)
(2.21)

s ≡ b1 + b2 = (1 + λ)sh1/sh0

d ≡ b1 − b2 = (1 − λ)sh2/sh0

b3 ≡ 2 sh3/sh0

(2.22)

(We note that some of the chi may take negative values, while leaving the corresponding shi

real, as well as ch0 and sh0).
Conversely, given λ, b1, b2, one deduces explicit expressions for the ratios xi ≡ chi/ch0

and for ch2
0. First, we obtain

x3 ≡ ch3/ch0 =
(
λ2 + 1 − b2

1 − b2
2

)
2(λ − b1b2)

(2.23)

and then, recalling the definition (2.21) of λ, which we rewrite as

λ = (2x3 + x2 − 1)/(x2 + 1), (2.24)

x2 can be deduced, as well as x1:

x1 = −(1 + x2x3)/(x2 + x3). (2.25)



On a class of quartic surfaces and an associated integrable differential system 6089

Next, we find

ch2
0 = (λ − b1b2)

2(
b2

1 − 1
)(

b2
2 − 1

) (2.26)

and hence (see (2.22)) an explicit expression of b2
3:

b2
3 = b2

3(λ, b1, b2).

The above equation is the constraint (2.13) on the four coefficients of the reduced form
of (�), and we assume it holds, in the remainder of the present work. Introducing auxiliary
quantities

ŝ ≡ (R − 1)2s2

d̂ ≡ (R − 1)2d2

b̂ ≡ (R − 1)
(
b2

3 − 4
)
,

(2.27)

the constraint also reads
R

ŝ − 4R2
= 1

d̂ − 4
+

1

b̂
. (2.28)

2.4. The symmetry group of the surface

The reduced form of the surface is preserved by several linear transformations of the (ξ, η)

or (u, v) plane: for instance, the inversion v′ = −v of the second coordinate results in the
following transformation, denoted as (T0), of the parameters:

(T0) : λ′ = λ, b′
1 = b2, b′

2 = b1, b′
3 = b3. (2.29)

Similarly, exchanging the axes u, v, i.e. exchanging these two diagonals of the quadrangle,
induces the transformation

(T1) : λ′ = −λ, s ′ = d, d ′ = s, b′
3 = b3. (2.30)

Another possibility is the exchange of one coordinate axis with the line at infinity—which
is the third diagonal of the quadrangle:

(T2) : λ′ = 3 − λ

λ + 1
, s ′ = −2b3

λ + 1
, d ′ = 2d

(λ + 1)
. (2.31)

Combining (T1) and (T2) yields a total of six distinct values λi of λ; and the six quartets
(−1, +1, λi,∞) are all homographically related.

There exists in addition a transformation that does not preserve the identity of the conic
point at infinity on the ρ-axis, which is

(T3) : λ′ = b1, b′
1 = λ, b′

2 = b2, b′
3 = b3, (2.32)

i.e., it exchanges the roles of λ and b1, just as (T0) exchanges the roles of b1, b2.
Combining all these transformations, one can place any of the 15 conic points at

infinity, and the corresponding parameters λ, b1, b2 of the surface may thus be deduced.
The transformation group has 6 × 15 = 90 elements, since λ takes six different values for
each choice of a conic point. Symmetrical combinations of ch1,2,3, such as

X ≡ sh2
0, Y ≡ (ch1 + ch2 + ch3) /ch0, Z ≡ ch1ch2ch3

/
ch3

0, (2.33)

can take only 15 distinct values : one for each choice of conic point.
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The group admits three invariants, which are rational functions of X, Y,Z and also rational
functions of S,K, P :

S ≡ λ2 + b2
1 + b2

2

K ≡ λ2b2
1 + λ2b2

2 + b2
1b

2
2

P ≡ λb1b2.

(2.34)

The first two are I 2
0 and I 2

1 , where

I0 ≡ ch3
0

sh0
(Y + Z) (2.35)

I 2
1 ≡ (4X + 1)2/4 − (X + 1)

X
Y [(3X + 1)Y + (X + 1)(4X + 1)Z]. (2.36)

The third one, I2, can conveniently be expressed in terms of

σ ≡ (4X + 1)

2I1

τ ≡ [(X + 1)Y 2 − (4X + 1)2/4]
/
I 2

1

(2.37)

as

1/2

(τ − σI2/I1)
≡ τ

(τ 2 − σ 2)
− 1

(τ + 1)
. (2.38)

Given the three invariants, the 15 sets of values of ch 1, 2, 3 may be deduced. It is worth
noting that changing the signs of Y and Z, without changing ch1,2,3, transforms (A2) and (E)

into new conics (Ã2), (Ẽ), without altering (A4). Consequently, (A4) is four times tangential
to both (E) and (Ẽ). Remarkably, this is also true of (A′

4).

3. The symmetric tensors X and G

Given a quartic surface (�) of the type described in the preceding section, it is possible to
construct two symmetric tensors Xij ,Gij , defined on the plane (ξ, η). The first one, X, is
uniquely determined, but the other one, G, belongs to a family depending quadratically on a
parameter, z. The symmetric tensor G determines null curves in the (ξ, η) plane, which are
the solutions of the differential system

Gij dξ i dξ j = 0 (3.1)

(where ξ 1, ξ 2 stands for ξ, η). It is this differential system that we will show to be integrable
by quadratures, and to possess the Painlevé property, with respect to a certain independent
variable u (We do not make use in what follows of the reduced coordinates u, v). As mentioned
in the introduction, it is a differential system of the same type that describes the evolution of
a certain class of gas clouds, expanding with rotation and precession (Gaffet 2006), and the
independent variable u then has the physical meaning of the thermasy of the cloud, which is
the time integral of its absolute temperature: u = ∫

T dt .

3.1. The symmetric tensor X

The tensors X and G have in common the essential property that their components are
polynomial functions of the coordinates (ξ, η). X is characterized by the following properties:
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(a) Xij is a fourth-degree polynomial function of (ξ, η).
(b) Along any straight line of direction pi , the component Xijp

ipj is only quadratic; in
particular, the dependence of X11 on ξ 1 is quadratic, as well as that of X22 on ξ 2.

(c) Whenever the discriminant � vanishes

Xij (∂i�)(∂j�) = 0 (3.2)

where the symbol ∂k indicates partial differentiation ∂/∂ξk (Indices can be raised and
lowered by means of the Levi-Civita symbol, see, e.g., Chandrasekhar (1983)).

(d) Whenever � = 0, the norm

XijXij = −2A6 (3.3)

where A6 denotes the product

A6 ≡ A2A4. (3.4)

As we now show, these four conditions fully determine X. First, we remark that, at conic
points (which are the double points of the locus � = 0), equation (3.2) gives two independent
conditions, while equation (3.3) gives a third, so that all three components Xij can be
determined.

Thus, at a conic point Kab, where the slopes of the two tangents are dη/dξ = ma and mb,
one finds

X11 = 2
√

A6mamb/(ma − mb)

X12 = −√
A6(ma + mb)/(ma − mb)

X22 = 2
√

A6/(ma − mb).

(3.5)

Further, from equations (2.8a) and (2.14), one can substitute a rational expression for the
radical √

A6 = γAQ2. (3.6)

Owing to the restrictions (a) and (b) on the degree of Xij , knowledge of its value at the 14
conic points turns out to be sufficient for its determination all over the plane, by means of the
Lagrange polynomial interpolation method. In particular, one can calculate the norm, which
is found to be generally given by

X · X = −2
(
A6 + k2

0�
)

(3.7)

where k0 is a constant, which turns out to be

k0 = sh0 (3.8)

(In what follows, we denote by A · B the scalar contraction AijBij of a pair of symmetric
tensors).

3.2. The symmetric tensor G

Another symmetric tensor G can be defined in a way analogous to X by the following conditions:

(a) Gij is a polynomial function of (ξ, η) of degree 7.
(b) Along any straight line of direction pi , the component Gijp

ipj is only of the fifth degree.
(c) Whenever � = 0,

Gij (∂i�)(∂j�) = 0. (3.9)

(d) The norm

G · G = −G2
3�

/
2 (3.10)

where the scalar G3 is a cubic polynomial.
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(e) The scalar product

G · X = −k0G3�. (3.11)

From the conditions (c) and (d), it follows that Gik∂k� = 0 when � = 0. Hence, the
three components Gij are proportional to each other along each line (�a) of the quadrangle.
Further, the proportionality constant, being the slope of the line, takes two distinct values at
conic points, so that the three Gij must vanish there. As there are five conic points on each
line, the components must have the form, on (�a),

Gij = (∂i�a)(∂j�a)�b�c�d E γ2a (3.12)

where a, b, c, d is a permutation of 1, 2, 3, 4 and γ2a is a quadratic factor

γ2a = ca2ξ
2 + ca1ξ + ca0. (3.13)

Similarly, it may be seen that, on (E), the components must read

Gij = (∂iE)(∂jE)�a�b�c�d T (3.14)

where T (ξ, η) is a linear factor

T = c50 + c51ξ + c52η. (3.15)

From the data of Gij on the quadrangle and on (E), together with the constraints (a) and (b)
on its degree, it is possible to deduce its value all over the plane, using Lagrange interpolation;
and the resulting expression linearly depends on the 15 coefficients cA0,1,2 (A = 1, . . . , 5).

Next, it can be seen that the condition (d), which involves a squared factor G2
3, entails

that γ2a should in fact be a perfect square and, similarly, that T should represent a straight line
tangential to (E). Thus, γ2a ≡ γ 2

1a , with

γ1a = αa1ξ + αa0 (3.16)

and, introducing a parametric representation of the conic (E), with parameter τ , the factor T
involves a perfect square as well:

T = γ 2
15

/
D2(τ ) (3.17a)

where

γ15 = α51τ + α50 (3.17b)

and D2 is some quadratic polynomial. This new representation involves ten parameters αA0,1

only—but the dependence of Gij on the parameters is quadratic.
Having thus determined the form of the components Gij , the scalar factor G3 may

be deduced, using either the linear equation (3.11) or the quadratic one (3.10). From
equation (3.10), it is found that G2

3 admits the following simple expression at conic point
Kab, the intersection of lines (�a) and (�b),

G2
3 = ϕabγ2a(Kab)γ2b(Kab) (3.18)

where ϕab is a known constant. Then, taking the square root, G3 is found as

G3 = ψabγ1aγ1b (3.19)

where ϕab = ψ2
ab. An expression of the same form also holds at conic points Kan (n = 5,

6) which are the intersections of (�a) and (E), with the factor γ1b replaced by γ15. Now, on
(�a), G3, being cubic, must have the form

G3 = γ1ag2a (3.20)
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where the factor g2a is quadratic; so we find, at the five conic points on (�a),

g2a = ψan γ1n (n = 1, . . . , 6, n �= a) (3.21)

(where γ1n means γ15 whenever n > 4). As three values are sufficient to fully determine
the trinomial g2a , the above equation gives two linear constraints on the coefficients αA0,1.
Applying it to the four lines of the quadrangle yields a total of six independent linear constraints,
so that all the coefficients can be linearly determined in terms of four of them only.

Alternatively, G3 can be determined from the linear equation (3.11). The resulting
expression, being linear in the 15 coefficients cA0,1,2, is quadratic in αA0,1.

Equating this with the independently obtained expression (see (3.20) and (3.21))

G3 = ψanγ1aγ1n (3.22)

gives a quadratic relation on the coefficients, one for each conic point. It turns out that two
such equations only are independent, so that two of the coefficients remain undetermined.

As the system is homogeneous, one of the coefficients may always be chosen arbitrarily
without loss of generality, so that there is effectively a one-parameter family of solutions only,
with parameter z, say. For a given z, one would a priori expect four distinct solutions to be
present, but in fact, as the full system is an overdetermined one, one solution only is found
to exist. All coefficients αA0,1 turn out to be linear functions of the parameter z; and so the
z-dependence of the tensor G is quadratic.

An essential element of the above method of determining the tensor G was the
consideration of the constants ψan which, being square roots, have an a priori undetermined
sign. This arbitrariness in fact does not exist, as no solution will be found to the system unless
one makes either of only two acceptable choices of sign. Of these two possibilities, only one
leads to a differential system integrable by quadrature in the way described below. It is the
case that we consider in what follows.

3.3. The differential system and its solution by quadrature

The symmetric tensor G, which may be viewed as a bi-dimensional metric, determines null
curves on the (ξ, η) plane, which are the solutions of the differential equation (3.1):

Gij dξ i dξ j = 0.

We choose to define an independent variable u through the relation

Xij ξ
′i (u)ξ ′j (u) = −G3

√
� (3.23)

where a prime denotes derivation with respect to u.
Equations (3.1) and (3.23) determine the derivatives ξ ′i , through their quadratic

combinations:

ξ ′iξ ′j = (P ij +
√

�Qij )

2A6
(3.24)

where the symmetric tensor P ij

P ij = GiaXj
a + GjaXi

a (3.25)

has components which are polynomials of the tenth degree, while Qij , also symmetric and of
degree 7, is given by

G3 � Qij = GiaP j
a + GjaP i

a . (3.26)

Taking account of equations (3.10) and (3.11), Qij also reads

Qij = G3X
ij − 2k0G

ij . (3.27)



6094 B Gaffet

We note the following identities:

X · P = 0 X · Q = −2G3A6. (3.28)

It may be worth noting here that (3.24) is the general form of the equations of motion
for a reversible Hamiltonian with a second integral quadratic in the momenta, such as, for
example, the Hénon–Heiles system (1964); in which case the discriminant � is a sixth-degree
polynomial, fully decomposable into linear factors. The Hénon–Heiles system however, being
soluble by separation of variables and also soluble in terms of elliptic functions, is more closely
related to the degenerate cases considered by Gaffet (2003).

The system (3.24) is soluble in the following way by quadrature

(ξ ′2 dξ 1 − ξ ′1 dξ 2)/
√

� = d� (3.29)

where d� is the exact differential of a function �(ξ 1, ξ 2) which, by construction, remains
constant along integral curves.

The condition of existence of � is

∂a(ξ
′a/

√
�) = 0. (3.30)

and it is possible to rewrite it in a form where no irrational except
√

� occurs, by forming
appropriate combinations of the vector:

Ui ≡ (2ξ ′i/
√

�)∂a(ξ
′a/

√
�) = 0. (3.31)

Thus, introducing

V ij ≡ ξ ′iξ ′j /� = (P ij +
√

�Qij )

2�A6
(3.32)

we find

V k
i Uj ≡ −V ka�∂iVja + ∂jVia − ∂aVij� = 0. (3.33)

Separating the rational and irrational parts, one finally obtains the compatibility condition in
polynomial form, such as

�P 12∂1P
11 + P 11∂2P

22� + ��Q12∂1Q
11 + Q11∂2Q

22�
= P 11[P 2a∂a ln(� A6)] + �Q11[Q2a∂a ln(A6)] − Q11[Q2a∂a�]/2 (3.34)

in which the quantities P ia∂a ln �,P ia∂a ln A6 and Qia∂a ln A6 are polynomial.
These polynomial equations are found to be satisfied, so that d� is indeed an exact

differential.

3.4. Linear dependence of � on z

We have seen in section 3.2 that the tensor G depends quadratically on a free parameter z; we
now show that the dependence of � on z is linear.

Let us recall that the differential system considered, being of second degree with
discriminant �, determines two distinct systems of integral curves: (C+) and (C−), which are
the solutions of (see (3.24))

ξ ′i
±ξ

′j
± = (P ij ± √

�Qij )

2A6
. (3.35)

From the rational form (equation (3.1)) of the system, which admits both ξ ′
+ and ξ ′

− as solutions,
one easily deduces

k
(
ξ ′i

+ ξ
′j
− + ξ

′j
+ ξ ′i

−
) = 2Gij (3.36)
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(where k is a scalar) and

kξ ′i
+ ξ

′j
− = Gij + εijG3

√
�/2. (3.37)

We similarly obtain

P · P = 2A2
6

(
ξ ′i

+ ξ ′
i−

)2
(3.38)

and hence, using (3.37),

P · P = 2A2
6G

2
3�

/
k2. (3.39)

On the other hand, from (3.25) and (3.7), (3.10) and (3.11)

P · P = 2�(G · G)(X · X) − (G · X)2� = 2A6G
2
3� (3.40)

so that k2 = A6.
Let us now show the following identity (from now on we usually omit the index + on ξ ′

+):

Gij + εij G3

√
�/2 = ξ ′i(Xj

aξ
′a + k0

√
�ξ ′j ). (3.41)

The antisymmetric part of the identity is an immediate consequence of (3.23). The symmetric
part reads, substituting for ξ ′iξ ′j its expression (3.24),

4A6G
ij = (

Xi
aP

aj + Xj
aP

ai
)

+
√

�
(
Xi

aQ
aj + Xj

aQ
ai

)
+ 2k0

√
�(P ij +

√
�Qij ). (3.42)

Using the definitions (3.25) and (3.26) of P and Q and noting that

G · P = G · Q = P · Q = X · P = 0 (3.43)

we have(
Xi

aP
aj + X

j
aP

ai
)/

2 = (G · X)Xij − (X · X)Gij

(
Xi

aQ
aj + X

j
aQ

ai
)/

2 = (G3�)−1[(G · X)P ij − (X · P)Gij ]

= −k0P
ij .

(3.44)

Thus the P ij terms cancel out on the right-hand side of (3.42), and it can be seen that the
Xij terms cancel each other as well and that the identity (3.42) is verified. Then, comparing
(3.37), (3.41), the (C−) solution is found to be linearly related to the (C+) one as

A
1/2
6 ξ ′i

− = Xi
aξ

′a + k0

√
�ξ ′i . (3.45)

That result has an interesting consequence on the form of the dependence of ξ ′ on the free
parameter z. We have seen (section 3.2) that G, and hence P, Q, depends quadratically on z

whereas X is independent of z. Therefore, from (3.24), ξ ′i must be proportional to the square
root of a second-degree polynomial in z:

ξ ′1 =
√

p2(z) ξ ′2 =
√

q2(z).

Then, by application of (3.45)

ξ ′1
− = c0

√
p2(z) + c1

√
q2(z)

where c0, c1 are the constants (i.e. independent of z); its square (ξ ′1
− )2 must however be rational,

as is (ξ ′1)2—therefore either p2 and q2 are proportional or they are perfect squares. In the
first case, the integral curves will not depend on z, which is not compatible with the fact that
the differential equation (3.1) does depend on it; therefore, we conclude that ξ ′i depends on z

linearly.
This in turn entails that the ‘integration constant’ �, defined by (3.29), is a linear function

of z:

� = �0 + z�1. (3.46)
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3.5. A unified formulation of � and of the independent variable u

The results of section 3.4 (see (3.41)) suggest introducing two non-symmetric tensors:

Ĝij ≡ Gij + εijG3

√
�/2 X̂ij ≡ Xij + εij k0

√
� (3.47)

which satisfy the relations

X̂iaX̂ja = −A6δ
i
j ĜiaĜja = 0 (3.48)

and hence det
(
Ĝij

) = 0.
From the linearity of the z-dependence of ξ ′

±, we can write

ξ ′1 ∝ (z − a); ξ ′1
− ∝ (z − b)

ξ ′2 ∝ (z − a); ξ ′2
− ∝ (z − β)

(3.49)

where a, b, α, β are functions of (ξ 1, ξ 2), and then, using (3.37),

Ĝ11 = a11(z − a)(z − b)

Ĝ12 = a12(z − a)(z − β)

Ĝ21 = a21(z − α)(z − b)

Ĝ22 = a22(z − α)(z − β)

(3.50)

where aij are functions of (ξ 1, ξ 2) as well satisfying det(aij ) = 0.
Now, from (3.24), (3.25) and (3.27), (ξ ′1)2 may be written as

2A6(ξ
′1)2 = P 11 +

√
�Q11 = 2(X̂11Ĝ12 − X̂12Ĝ11) (3.51)

so the condition that it be proportional to (z − a)2 determines the ratio X̂12/X̂11. The ratios of
all X̂ components can thus be found through the consideration of the corresponding identities
relating to

(
ξ ′i
±
)2

, and we obtain

X̂11 = (h/
√

�)a11(a − b)

X̂12 = (h/
√

�)a12(a − β)

X̂21 = (h/
√

�)a21(α − b)

X̂22 = (h/
√

�)a22(α − β)

(3.52)

where h is a priori arbitrary and the factor
√

� has been introduced for convenience.
Thus, X̂ij is proportional to the square root of the discriminant of Ĝij .
We also note that, on the locus � = 0, where ξ ′

− = ξ ′
+ and ξ ′2/ξ ′1 = −∂1�/∂2� is

independent of z, we must have a = b = α = β, so that the discriminant of Ĝij has a factor

�—in addition to the factor
(
X̂ij

)2
. But, Ĝ11 being a polynomial of degree 7, its discriminant

is of degree 14, as is the product �(X̂11)2—therefore the two quantities are proportional, i.e.,
the factor h is a constant, which we may take to be unity without loss of generality.

The following relation, which is deduced from (3.48), is also of interest:

A6 = −(h2/�)a11a22(a − α)(b − β). (3.53)

If we now calculate the product ξ ′1ξ ′2, using an identity of the type of (3.51), we obtain

ξ ′1ξ ′2

(z − a)(z − α)
= (h/

√
�)a11a22 (b − β) /A6 = (

√
�/h)

(α − a)
. (3.54)

That result has a direct implication on the nature of the independent variable u and its relation
with the function �. Let us consider a differential system of the form

ξ ′(u) = A(z − a) η′(u) = B(z − α)
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(where z is a parameter), integrable in the form (3.29), (3.46) and satisfying (3.54):

AB =
√

�

(α − a)
,

we obtain

d�0 ∧ d�1

dξ ∧ dη
= AB

�
(α − a) = 1√

�
. (3.55)

On the other hand, for any differential system integrable in the form (3.29), the independent
variable u, viewed as a function of (ξ, η), must have the general form

du = 1

2

(
dξ

ξ ′ +
dη

η′

)
+ λ d� (3.56)

(where λ is some function of the coordinates), whence

d� ∧ du

dξ ∧ dη
= 1√

�
. (3.57)

Comparing (3.55) and (3.57), we see that u can be identified with �1, i.e. ∂�/∂z (assuming
a finite value for the particular value of z under consideration), to which one may add an
arbitrary multiple of �.

4. The Painlevé property

A differential system is said to have the Painlevé property if its generic solution is free
of movable singularities other than poles. Singularities may only occur at points where
the expression of the derivatives becomes non-holomorphic; and in the case of the system
represented by the differential equations (3.1) and (3.24), they are the points where ξ ′ either
has a branch-point or becomes infinite. This may occur in the following four cases only:

(a) When A6 = 0.
(b) When � = 0.
(c) When P ij +

√
�Qij = 0.

(d) When one or both of the coordinates (ξ, η) becomes infinite.

Let us examine in turn these four possibilities.

4.1. Case (a): A6 = 0

From (3.35) and (3.37) one easily deduces the identity

(P ij )2 − �(Qij )2 = 4A6G
iiGjj (4.1)

while, from the definitions (3.25), (26) of P and Q, one also finds(
P iaQj

a + P jaQi
a

) = 4A6G3G
ij . (4.2)

Assuming that A6 vanishes, P and Q are thus proportional (from (4.2)), and then, from (4.1)

P ij = ε
√

�Qij (ε = ±1).

Let us first consider the case ε = +1.
Then ξ ′iξ ′j = √

�Qij/A6 → ∞, and the slope of the integral curve, or trajectory, is
dη

dξ
= Q12/Q11 = Q22/Q12; on the other hand, we have found (see section 3.3) that the



6098 B Gaffet

quantity Qia∂aA6 vanishes with A6—therefore the slope coincides with that of the curve (A6).
Then, according to its definition (3.29), � stays constant along (A6), which is therefore one
of the integral curves, and not a part of their envelope (which is the locus � = 0). Being a
particular solution, it is not relevant to the Painlevé analysis, which deals with the properties
of the generic solution.

Turning now to the case ε = −1, we find that the derivatives have the indeterminate form
ξ ′i = 0/0 at the point (ξ0, η0) considered. The slope dη

dξ
= Ĝ21/Ĝ11 differs in general from

that of (A6), which is Ĝ12/Ĝ11. The quantity P ij +
√

�Qij , being the only vanishing factor
on the left-hand side of equation (4.1), must have a factor (A6), which cancels out with the
denominator of equation (3.24), so that ξ ′i is in fact finite, hence regular, at that point.

4.2. Case (b): � = 0

Then, as a consequence of (3.1), (3.9) and (3.10), the slope dη

dξ
= −∂ξ�/∂η�, so that the locus

� = 0 is the envelope of trajectories; as a consequence, � is locally proportional to (ξ − ξ0)
2,

and
√

� in fact has no branch point at that point.
The case of the conic points, which lie at the double points of the locus � = 0, must

also be considered. Let us choose a coordinate system (x, y) where two branches of the
locus, (�1) and (�2) say, locally coincide with the coordinate axes; the corresponding
conic point K12 is at the origin. From the fact that the tensor Gij must vanish at conic
points, together with its other general properties (section 3.2), it must locally have the
form G11 ∝ y;G12 = 0;G22 ∝ x and the discriminant � ∝ xy; so that the differential
equation (3.1) becomes x dy2 − k dx2 = 0, where k is a constant. The integral curves are the
family of parabolae: (kx − y)2 −2a(kx + y)+a2 = 0, which are tangential to (�1) and (�2);
thus, the general solution does not pass through the conic points. That result is in agreement
with the property that the general solution does not intersect the conic (A2) either (see
section 4.1), which may be viewed as the locus on the (ξ, η) plane of the conic point K0 at
infinity along the vertical axis. (The integral curves that do cross (A2) belong to a different
branch of the general solution—the case ε = −1 in section 4.1—and do so only in projection
on the (ξ, η) plane: the corresponding curves on the quartic surface (�) do not pass through
K0).

4.3. Case (c): P ij +
√

�Qij = 0

Then either ξ ′1 or ξ ′2 vanishes, and the corresponding P ii +
√

�Qii must be zero.
Neglecting the case A6 = 0, already considered in section 4.1, the identity (4.1) entails

that if P ii +
√

�Qii vanishes then so does Gii , and the former quantity must be proportional
to (Gii)2. Then, the vanishing ξ ′i is proportional to the polynomial function Gii and thus has
no branch point.

4.4. Case (d): ξ i → ∞
That case can be eliminated through a linear coordinate transformation that changes the
line at infinity into another straight line. In the reduced form of the system, for example
(section 2.2), the line at infinity is one of the diagonals of the quadrangle, and it can
be changed into another diagonal without changing the form of the system. In other words,
there can be no branch points on the diagonal at infinity, because there are none on the other
two diagonals.
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5. Conclusion

Starting with a quartic surface (�) of the class defined in section 2, we have shown how to
associate with it a one-parameter family of symmetric tensors G, polynomial functions of the
coordinates, which may be viewed as playing the role of a metric on (�).

For each value of the parameter, the null curves of the corresponding metric are the
solutions of a differential system, which we have shown to have the Painlevé property and to
be integrable by quadratures as well.

Differential systems of exactly the same form have been shown (Gaffet 2006) to represent
the evolution of a certain class of rotating and precessing gas clouds which obey the system
of Euler equations of gasdynamics (Ovsiannikov 1956, Dyson 1968).
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